Copied to
clipboard

G = C2×C33⋊D4order 432 = 24·33

Direct product of C2 and C33⋊D4

direct product, non-abelian, soluble, monomial

Aliases: C2×C33⋊D4, S322D6, C62S3≀C2, C333(C2×D4), (C32×C6)⋊2D4, C33⋊C43C22, C324D62C22, (C2×S32)⋊5S3, (S32×C6)⋊10C2, C33(C2×S3≀C2), (C3×C3⋊S3)⋊5D4, (C3×S32)⋊3C22, C3⋊S32(C3⋊D4), (C3×C6)⋊3(C3⋊D4), (C2×C3⋊S3).21D6, C324(C2×C3⋊D4), (C2×C33⋊C4)⋊6C2, C3⋊S3.3(C22×S3), (C3×C3⋊S3).6C23, (C2×C324D6)⋊5C2, (C6×C3⋊S3).34C22, SmallGroup(432,755)

Series: Derived Chief Lower central Upper central

C1C32C3×C3⋊S3 — C2×C33⋊D4
C1C3C33C3×C3⋊S3C324D6C33⋊D4 — C2×C33⋊D4
C33C3×C3⋊S3 — C2×C33⋊D4
C1C2

Generators and relations for C2×C33⋊D4
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=c-1, fbf=c, cd=dc, ece-1=fcf=b, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 1396 in 192 conjugacy classes, 31 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, D4, C23, C32, C32, Dic3, D6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C33, C32⋊C4, S32, S32, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C2×C3⋊D4, S3×C32, C3×C3⋊S3, C3×C3⋊S3, C32×C6, S3≀C2, C2×C32⋊C4, C2×S32, C2×S32, S3×C2×C6, C33⋊C4, C3×S32, C3×S32, C324D6, C324D6, S3×C3×C6, C6×C3⋊S3, C6×C3⋊S3, C2×S3≀C2, C33⋊D4, C2×C33⋊C4, S32×C6, C2×C324D6, C2×C33⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C2×C3⋊D4, S3≀C2, C2×S3≀C2, C33⋊D4, C2×C33⋊D4

Permutation representations of C2×C33⋊D4
On 24 points - transitive group 24T1292
Generators in S24
(1 17)(2 18)(3 19)(4 20)(5 15)(6 16)(7 13)(8 14)(9 21)(10 22)(11 23)(12 24)
(2 6 10)(4 12 8)(14 20 24)(16 22 18)
(1 9 5)(3 7 11)(13 23 19)(15 17 21)
(1 9 5)(2 6 10)(3 11 7)(4 8 12)(13 19 23)(14 24 20)(15 17 21)(16 22 18)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 20)(2 19)(3 18)(4 17)(5 14)(6 13)(7 16)(8 15)(9 24)(10 23)(11 22)(12 21)

G:=sub<Sym(24)| (1,17)(2,18)(3,19)(4,20)(5,15)(6,16)(7,13)(8,14)(9,21)(10,22)(11,23)(12,24), (2,6,10)(4,12,8)(14,20,24)(16,22,18), (1,9,5)(3,7,11)(13,23,19)(15,17,21), (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,19,23)(14,24,20)(15,17,21)(16,22,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,20)(2,19)(3,18)(4,17)(5,14)(6,13)(7,16)(8,15)(9,24)(10,23)(11,22)(12,21)>;

G:=Group( (1,17)(2,18)(3,19)(4,20)(5,15)(6,16)(7,13)(8,14)(9,21)(10,22)(11,23)(12,24), (2,6,10)(4,12,8)(14,20,24)(16,22,18), (1,9,5)(3,7,11)(13,23,19)(15,17,21), (1,9,5)(2,6,10)(3,11,7)(4,8,12)(13,19,23)(14,24,20)(15,17,21)(16,22,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,20)(2,19)(3,18)(4,17)(5,14)(6,13)(7,16)(8,15)(9,24)(10,23)(11,22)(12,21) );

G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,15),(6,16),(7,13),(8,14),(9,21),(10,22),(11,23),(12,24)], [(2,6,10),(4,12,8),(14,20,24),(16,22,18)], [(1,9,5),(3,7,11),(13,23,19),(15,17,21)], [(1,9,5),(2,6,10),(3,11,7),(4,8,12),(13,19,23),(14,24,20),(15,17,21),(16,22,18)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,20),(2,19),(3,18),(4,17),(5,14),(6,13),(7,16),(8,15),(9,24),(10,23),(11,22),(12,21)]])

G:=TransitiveGroup(24,1292);

On 24 points - transitive group 24T1312
Generators in S24
(1 6)(2 7)(3 8)(4 5)(9 19)(10 20)(11 17)(12 18)(13 24)(14 21)(15 22)(16 23)
(1 21 20)(2 22 17)(3 18 23)(4 19 24)(5 9 13)(6 14 10)(7 15 11)(8 12 16)
(1 20 21)(2 22 17)(3 23 18)(4 19 24)(5 9 13)(6 10 14)(7 15 11)(8 16 12)
(1 20 21)(2 22 17)(3 18 23)(4 24 19)(5 13 9)(6 10 14)(7 15 11)(8 12 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 6)(2 5)(3 8)(4 7)(9 22)(10 21)(11 24)(12 23)(13 17)(14 20)(15 19)(16 18)

G:=sub<Sym(24)| (1,6)(2,7)(3,8)(4,5)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,21,20)(2,22,17)(3,18,23)(4,19,24)(5,9,13)(6,14,10)(7,15,11)(8,12,16), (1,20,21)(2,22,17)(3,23,18)(4,19,24)(5,9,13)(6,10,14)(7,15,11)(8,16,12), (1,20,21)(2,22,17)(3,18,23)(4,24,19)(5,13,9)(6,10,14)(7,15,11)(8,12,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6)(2,5)(3,8)(4,7)(9,22)(10,21)(11,24)(12,23)(13,17)(14,20)(15,19)(16,18)>;

G:=Group( (1,6)(2,7)(3,8)(4,5)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,21,20)(2,22,17)(3,18,23)(4,19,24)(5,9,13)(6,14,10)(7,15,11)(8,12,16), (1,20,21)(2,22,17)(3,23,18)(4,19,24)(5,9,13)(6,10,14)(7,15,11)(8,16,12), (1,20,21)(2,22,17)(3,18,23)(4,24,19)(5,13,9)(6,10,14)(7,15,11)(8,12,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6)(2,5)(3,8)(4,7)(9,22)(10,21)(11,24)(12,23)(13,17)(14,20)(15,19)(16,18) );

G=PermutationGroup([[(1,6),(2,7),(3,8),(4,5),(9,19),(10,20),(11,17),(12,18),(13,24),(14,21),(15,22),(16,23)], [(1,21,20),(2,22,17),(3,18,23),(4,19,24),(5,9,13),(6,14,10),(7,15,11),(8,12,16)], [(1,20,21),(2,22,17),(3,23,18),(4,19,24),(5,9,13),(6,10,14),(7,15,11),(8,16,12)], [(1,20,21),(2,22,17),(3,18,23),(4,24,19),(5,13,9),(6,10,14),(7,15,11),(8,12,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,6),(2,5),(3,8),(4,7),(9,22),(10,21),(11,24),(12,23),(13,17),(14,20),(15,19),(16,18)]])

G:=TransitiveGroup(24,1312);

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E3F4A4B6A6B6C6D6E6F6G6H6I6J6K···6P6Q6R6S6T
order122222223333334466666666666···66666
size11669918182444485454244446666812···1218183636

36 irreducible representations

dim111112222222444488
type++++++++++++++
imageC1C2C2C2C2S3D4D4D6D6C3⋊D4C3⋊D4S3≀C2C2×S3≀C2C33⋊D4C2×C33⋊D4C33⋊D4C2×C33⋊D4
kernelC2×C33⋊D4C33⋊D4C2×C33⋊C4S32×C6C2×C324D6C2×S32C3×C3⋊S3C32×C6S32C2×C3⋊S3C3⋊S3C3×C6C6C3C2C1C2C1
# reps141111112122444411

Matrix representation of C2×C33⋊D4 in GL4(𝔽7) generated by

6000
0600
0060
0006
,
1040
5614
4406
0001
,
5353
3523
0010
0004
,
3145
1335
0040
0002
,
6265
1214
5215
1135
,
5334
5561
2562
1135
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[1,5,4,0,0,6,4,0,4,1,0,0,0,4,6,1],[5,3,0,0,3,5,0,0,5,2,1,0,3,3,0,4],[3,1,0,0,1,3,0,0,4,3,4,0,5,5,0,2],[6,1,5,1,2,2,2,1,6,1,1,3,5,4,5,5],[5,5,2,1,3,5,5,1,3,6,6,3,4,1,2,5] >;

C2×C33⋊D4 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes D_4
% in TeX

G:=Group("C2xC3^3:D4");
// GroupNames label

G:=SmallGroup(432,755);
// by ID

G=gap.SmallGroup(432,755);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,141,1684,571,165,677,530,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=c^-1,f*b*f=c,c*d=d*c,e*c*e^-1=f*c*f=b,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽